

PHARMASSURE

Pharmaceutical Proficiency Testing Scheme

Scheme Description

LGC Proficiency Testing

1 Chamberhall Business Park Chamberhall Green Bury, BL9 0AP UK.

Telephone: +44 (0) 161 762 2500 Email: axiopt@lgcgroup.com Website: www.lgcstandards.com

Issue: 18 Issue date: September 2022

Record of issue status and modifications

ISSUE	ISSUE DATE	DETAILS	AUTHORISED BY
7	Feb 2014	A new method added to sample 1F. Added new microbiological parameters: Candida albicans; identification of sterility. Statement on the traceability included in appendix A. Value of SDPA for sodium chloride in sample 1C updated. Inclusion of 2D Conductivity and Particulate determination in solutions trial sample. Micro method abbreviation codes added.	T. Noblett & M. Whetton
8	Dec 2014	Range for all parameters of sample 4 reduced. Inclusion of methods to samples 1C and 2. Additional information included for sample 2. Inclusion of subcontracting information in 'Test Materials' section.	T. Noblett & M. Whetton
9	Jan 2016	Inclusion of the USP methods for chemistry samples. Additional analytes for sample 2B. Inclusion of 2E Residual solvents. Additional analytes (microbiology). Samples re-numbered: 2 changed to 6A-6J; 2C changed to 7A and B; 2D changed to 8A and B; 4 changed to 4A and B. Removed Hard copy report information.	T. Noblett & M. Whetton A. McCarthy
10	May 2016	Kinematic viscosity split by calculated / measured. Additional analytes (Hexane and Acetone) added to sample 2E.	K. Baryla
11	Jan 2017	AAS method added to sample 2B. Analytes list updated for 2E Residual solvents. Inclusion of 6K NMR and 6L XPRD samples. Additional information added to sample 7B.	K. Baryla
12	Jun 2017	Methods added to sample 1D. Temperature added to 1A and 6C samples. Ranges included for 6C sample. Inclusion of sample 7C Uniformity of dosage units. Unit changed for sample 7A.	K. Baryla
13	Jul 2018	New Micro sample 9 added for Salmonella P/A New Micro sample 10 added for microbiological quality of medicinal herbs	R.Smith
14	Dec 2018	Amended units for sample 10 to cfu/g. Updated methods section for Micro samples Website information added to page 3	A.S.Eden/R.Smith A McCarthy
15	Nov 2019	Detection of <i>Burkholderia cepacia</i> added to micro 4B sample Added six chemistry samples: Endotoxins in solution (11), eliquid chemical analysis (12), ginseng supplement analysis (13), elements in supplements (14), sildenafil in supplements (15) and cannabidiol in supplements (16) Units amended for Sample 9 Detection of Salmonella	R.Smith R. Connolly S. Xystouris A.S.Eden
16	Sep 2020	Removed fax number and hard copy report info	A McCarthy
17	Jun 2021	Updated units for sample 12, and DP for 14. Sample 6L removed. Updated email address and UKAS logo Updated sample name for sample 14. Addition of new samples (17-21) Density added to sample 12	R. Connolly A Collins S Xystouris
18	Sept 2022	Added applicable Chinese Pharmacopoeia (ChP) methods Added unit information for sample 20 and two extra analytes in sample 12, change in naming of sample 12	R. Connolly S. Xystouris

Notes:

Where this document has been translated, the English version shall remain the definitive version

Scheme Aims and Organisation

The primary aim of the Pharmaceutical Proficiency Testing Scheme (PHARMASSURE) is to enable laboratories performing the analysis of pharmaceutical products to monitor their performance and compare it with that of their peers. PHARMASSURE also aims to provide information to participants on technical issues and methodologies relating to testing of pharmaceutical products.

The PHARMASSURE scheme year operates from January to December. Further information about PHARMASSURE, including test material availability, round despatch dates and reporting deadlines, are available on the current PHARMASSURE application form and on the website www.lgcstandards.com.

The PHARMASSURE scheme operates an advisory group made up of participants and industry experts. A list of advisory group members is available from LGC Standards on request. The advisory group meets twice a year and is concerned with all aspects of scheme development, operation and participant performance.

Test Materials

Details of test materials available in PHARMASSURE are given in Appendix A. The test parameters are continually reviewed to ensure they meet the needs of current laboratory testing and regulatory requirements.

Test material batches are tested for homogeneity for at least one test parameter where deemed appropriate. Details of homogeneity tests performed and results are given in the PHARMASSURE Scheme Reports.

Some aspects of the scheme, such as test material production, homogeneity testing and stability assessment, can from time to time be subcontracted. When subcontracting occurs, it is placed with a competent subcontractor and LGC is responsible for this work. The planning of the scheme, the evaluation of performance and the authorisation of the final report will never be subcontracted.

Statistical Analysis

Information on the statistics used in PHARMASSURE can be found in the General Protocol and in the Scheme Report. Methods for determining assigned values and the values for SDPA used for individual samples are given in Appendix A

Methods

Methods are listed in PORTAL. Please select the most appropriate method from the list. If none of the methods are appropriate, then please report your method as 'Other' and record a brief description in the Comments Section in PORTAL.

The time and temperature of incubation does not need to be reported.

Results and Reports

PHARMASSURE results are returned through our electronic reporting software, PORTAL, full instructions for which are provided by email.

PHARMASSURE reports will be available on the website within 10 working days of round closure. Participants will be emailed a link to the report when it is available.

APPENDIX A - Description of abbreviations used

Assigned Value (AV)

The assigned value may be derived in the following ways:

From the robust mean (median) of participant results (RMean). This is the median of participant results after the removal of test results that are inappropriate for statistical evaluation, e.g. miscalculations, transpositions and other gross errors. Generally, the assigned value will be set using results from all methods, unless the measurement is considered method-dependant, in which case the assigned value will be set by method and indicated in the report tables.

For some analytes, where there is a recognised reference method for that type of measurement, this may be used as the assigned value for a particular analyte i.e. it would be applied to results obtained by any method.

Traceability: Assigned values which are derived from the participant results, or a sub-set of the results are not traceable to an international measurement standard. The uncertainty of assigned values derived in this way is estimated from the participant results, according to ISO 13528.

 From a formulation value (Form). This denotes the use of an assigned value derived from sample preparation details, where known and exact quantities of analyte have been used to prepare the sample.

Traceability: Assigned values calculated from the formulation of the test sample are traceable, via an unbroken metrological traceability chain, to an international measurement standard. The measurement uncertainty of the assigned value is calculated using the contributions from each calibration in the traceability chain.

• From a qualitative formulation (Qual Form). This applies to qualitative tests where the assigned value is simply based on the presence/absence of the analyte in the test material.

Traceability: Assigned values calculated from the qualitative formulation of the test sample are traceable to a certified reference standard or a microbiological reference strain.

• From expert labs (Expert). The assigned value for the analyte is provided by an 'expert' laboratory.

Traceability: Assigned values provided by an 'expert' laboratory may be traceable to an international measurement standard, according to the laboratory and the method used. The uncertainty of measurement for an assigned value produced in this way will be provided by the laboratory undertaking the analysis. Details of traceability and the associated uncertainty will be provided in the report for the scheme/round.

Range

This indicates the concentration range at which the analyte may be present in the test material.

SDPA

SDPA represents the 'standard deviation for proficiency assessment' which is used to assess participant performance for the measurement of each analyte. This may be a fixed value (as stated), a percentage (%) of the assigned value or based on the robust standard deviation of the participant measurement results, either across all methods or by method depending on whether the measurement made is method dependent (see assigned value).

Units

This indicates the units used for the assessment of data. These are the units in which participants should report their results. For some analytes in some schemes participants may have a choice of which units to report their results, however, the units stipulated in this scheme description are the default units to which any results reported using allowable alternative results will be converted to.

DP

This indicates the number of decimal places to which participants should report their measurement results.

Issue: 18 Page 5 of 19 Issue date: September 2022

Chemistry samples Chemical Testing

Sample PT-PH-01 Basic Chemical Testing

Sample 1A pH

Supplied as: 1 x 60mL buffer solution

Analyte	Method	AV	Range	SDPA	Units	DP
pH (20°C)	Ph. Eur. 2.2.3 USP 791 ChP 0631	RMean	4-10	0.05	-	2

Sample PT-PH-1B Acid/Base Titration
Supplied as: 1 x 60mL acid solution

Analyte		Method	AV	Range	SDPA	Units	DP
Acid/bas	se titration	Phenolphthalein endpoint Potentiometric endpoint ChP 0701	Formulation	15-25	0.15	mL	2

Sample PT-PH-1C Other Basic Titration

Supplied as: 1 x 60mL or 125mL solution (sample format dependant on test type)

Analyte	Method	AV	Range	SDPA	Units	DP
Titre	Various	Formulation	All	0.15	mL	2
Title	vanous	RMean	All	0.15	IIIL	۷
Sodium bicarbonate	Various	Formulation	All	0.10	%(w/v)	2
Magnesium	Mordant black endpoint Other endpoint	Formulation	All	1% of AV	mg/L	0
Dipotassium hydrogen phosphate	Ph. Eur. 2.2.20 USP 541	RMean	All	2% of AV	%	2
Sodium chloride	Ph. Eur. 2.2.20 USP 541 Mohr Volhard	Formulation	All	1% of AV	g/L	2

Samples for this test will vary by round.

Sample PT-PH-1D

Density

Supplied as:

1 x 60mL oil sample

Analyte	Method	AV	Range	SDPA	Units	DP
Density	Density meter Pycnometer ChP 0601	RMean	All	0.002	g/cm ³	3

Sample PT-PH-1E Supplied as:

Refractive Index

1 x 60mL sugar solution

Analyte	Method	AV	Range	SDPA	Units	DP
Refractive Index	Ph. Eur. 2.2.6 USP 831 ChP 0622	Formulation	All	0.0010	-	4

Sample PT-PH-1F Supplied as:

Melting Point

1 x 2g sample

Analyte	Method	AV	Range	SDPA	Units	DP
Melting Point	Ph. Eur. 2.2.14 Ph. Eur. 2.2.60 USP 741 ChP 0612	RMean	All	1.0	°C	1

Sample PT-PH-2A

HPLC Analysis

Supplied as:

1 x sample and reference standard for analysis by HPLC (Sample format will vary from round to round)

Analyte	Method	AV	Range	SDPA	Units	DP
TBC*	Ph. Eur. 2.2.29 USP 621 ChP 0512	RMean	All	2.5% of AV	TBC*	2

^{*}Information regarding the format of the sample will be provided on the preparation instructions for each round. Samples will be formulated in such a way that the analysis will be applicable to the majority of laboratories performing HPLC analysis.

Sample PT-PH-2B**

Trace elements

Supplied as:

1 x 5g sample for the determination of trace element impurities

1 x 1g of matrix

Analyte	Method	AV	Range	SDPA	Units	DP
Arsenic	105.110	RMean	0.1-1.5	Robust SD	μg/g	2
Cadmium	ICP-MS	RMean	0.1-0.5	Robust SD	μg/g	2
Lead	ICP-OES AAS	RMean	0.1-1.0	Robust SD	μg/g	2
Mercury	ChP 0406	RMean	0.1-1.5	Robust SD	μg/g	2
Chromium	ChP 0411	RMean	0.1 - 25	Robust SD	μg/g	2
Copper	ChP 0412	RMean	0.1 - 130	Robust SD	μg/g	2
Zinc		RMean	0.1 - 1300	Robust SD	μg/g	2

Sample PT-PH-2E***

Residual solvents

Supplied as:

1 x 2g sample for the determination of residual solvents

1 x 1ml spiking solution

Analyte	Method	AV	Range	SDPA	Units	DP
Benzene		RMean	0 - 2	Robust SD	μg/g	2
Carbon tetrachloride	Ph. Eur. 2.4.24	RMean	0 - 4	Robust SD	μg/g	2
1,2-Dichloroethane	Ph. Eur. 2.2.28	RMean	0 - 5	Robust SD	μg/g	2
1,1- Dichloroethene	USP 467	RMean	0 - 8	Robust SD	μg/g	2
1,1,1-Trichloroethane	ChP 0861	RMean	0 - 1500	Robust SD	μg/g	0
Chloroform	GC-FID	RMean	0 - 60	Robust SD	μg/g	1
Hexane	GC-MS	RMean	0 - 290	Robust SD	μg/g	0
Methanol	GC-ECD	RMean	0 - 3000	Robust SD	μg/g	0
Toluene	GC-PID	RMean	0 - 890	Robust SD	μg/g	0
Acetone	GC-TCD	RMean	0 - 5000	Robust SD	μg/g	0
Ethanol		RMean	0 - 5000	Robust SD	μg/g	0

Advanced Chemical Testing

Sample PT-PH-6A Gas Chromatography (GC)

Supplied as: Sample and reference standard (Format depends upon type of test material)

Technique	Method	AV	Range	SDPA	Units	DP
GC	Ph. Eur. 2.2.28 USP 621 ChP 0521	Formulation or RMean	All	Robust SD	See instruction	sheet

Sample PT-PH-6B UV

Supplied as: 1 x sample (Format depends upon type of test material)

Technique	Method	AV	Range	SDPA	Units	DP
UV	Ph. Eur. 2.2.25 ChP 0401	RMean	All	Robust SD	See instruction	sheet

Sample PT-PH-6C Viscosity

Supplied as: 1 x 250ml solution sample

Technique	Method	AV	Range	SDPA	Units	DP
Dynamic viscosity (20°C)	Ph. Eur. 2.2.9 Ph. Eur. 2.2.10 USP 911 USP 912 ChP 0633	RMean	10-300	Robust SD	mPa⋅s	0
Kinematic viscosity - measured (20°C)	Ph. Eur. 2.2.9 USP 911 ChP 0633	RMean	10-300	Robust SD	mm2/s	0
Kinematic viscosity - calculated from dynamic viscosity (20°C)	Ph. Eur. 2.2.9 Ph. Eur. 2.2.10 USP 911 USP 912 ChP 0633	RMean	10-300	Robust SD	mm2/s	0

Sample PT-PH-6D Loss on Drying (LOD)

Supplied as: 1 x sample (Format depends upon type of test material)

Technique	Method	AV	Range	SDPA	Units	DP
Loss on drying (LOD)	Ph. Eur. 2.2.32 USP 731 ChP 0831	RMean	All	0.1	%(w/w)	2

Sample PT-PH-6E FTIR

Supplied as: Sample and reference standard (Format depends upon type of test material)

Technique	Method	AV	Range	SDPA	Units	DP
IR/FTIR	Ph. Eur. 2.2.24 USP 197 ChP 0402	Qualitative Pharm	naceutical Analys	sis		

Sample PT-PH-6F Karl Fischer

Supplied as: 1 x sample (Format depends upon type of test material)

Technique	Method	AV	Range	SDPA	Units	DP
Moisture by Karl Fischer	Ph. Eur. 2.5.12 USP 921 ChP 0832	RMean	All	Robust SD	%(w/w)	2

Sample PT-PH-6G TLC

Supplied as: Sample, reference standard and TLC plates (Format depends upon type of test material)

Technique	Method	AV	Range	SDPA	Units	DP
TLC	Ph. Eur. 2.2.27 USP 621 ChP 0502	Qualitative Pharm	naceutical Analys	sis		

Sample PT-PH-6H FLAA

Supplied as: 1 x 60ml solution sample

Technique	Method	AV	Range	SDPA	Units	DP
Flame spectroscopy	Ph. Eur. 2.2.22 Ph. Eur. 2.2.23 Ph. Eur. 2.2.57 USP 232 USP 233 ChP 0407	Formulation	All	Robust SD	%(w/v)	2

Sample PT-PH-6I Polarimetry

Supplied as: 1 x sample (Format depends upon type of test material)

Technique	Method	AV	Range	SDPA	Units	DP
Polarimetry	Ph. Eur. 2.2.7 USP 781 ChP 0621	RMean	All	Robust SD	0	2

Sample PT-PH-6J Advanced Titration

Supplied as: 1 x sample (Format depends upon type of test material)

Technique	Method	AV	Range	SDPA	Units	DP
Advanced titration (potentiometric, non-aqueous)	Various	RMean	All	Robust SD	See instruction	sheet

Sample PT-PH-6K*** Nuclear Magnetic Resonance (NMR) Spectrometry

Supplied as: 1 x 1g sample

Technique	Method	AV	Range	SDPA	Units	DP
Qualitative	Ph. Eur. 2.2.33	Qualitative Pharmaceutical Analysis				
Quantitative	USP 761 ChP 0441	RMean	All	Robust SD	%	2

Sample PT-PH-7A** Dissolution testing

Supplied as: 1 x sample for dissolution testing and reference standard

Analyte	Method	AV	Range	SDPA	Units	DP
Dissolution	Ph. Eur. 2.9.3 USP 711 ChP 0931	RMean	All	Robust SD	%	2

^{**}Test material currently not included in LGC's UKAS Scope of Accreditation.

Sample PT-PH-7B** Tablet testing

Supplied as: 1 x sample for tablet testing

Analyte	Method	AV	Range	SDPA	Units	DP
Diameter	Various	RMean	All	Robust SD	mm	2
Disintegration	Ph. Eur. 2.9.1 USP 701 ChP 0921	Qual Form	All	N/A	N/A	N/A
Friability	Ph. Eur. 2.9.7 USP 1216 ChP 0923	Qual Form	All	N/A	N/A	N/A
Resistance to crushing	Ph. Eur. 2.9.8 USP 1217	RMean	All	Robust SD	N	2
Thickness	Various	RMean	All	Robust SD	mm	2
Uniformity of weight	Ph. Eur. 2.9.5 ChP 0101	Qual Form	All	N/A	N/A	N/A

Sample PT-PH-7C** Uniformity of dosage units

Supplied as: 1 x 10 dosage units* and reference standard

Analyte	Method	AV	Range	SDPA	Units	DP
Uniformity of dosage units	Ph. Eur. 2.9.40 USP 905 ChP 0941	RMean	All	Robust SD	%	2

^{*} One of the following: tablets, capsules, powders or suspensions.

^{***}Analytes, assigned values, ranges and SDPAs are subject to alterations. Test material currently not included in LGC's UKAS Scope of Accreditation.

Sample PT-PH-8A**

Conductivity in solutions

Supplied as:

1 x 125mL sample for conductivity in solutions

Analyte	Method	AV	Range	SDPA	Units	DP
Low level conductivity	Ph. Eur. 2.2.38 USP 1644 ChP 0681	RMean	1 - 50	Robust SD	μS/cm	2

Sample PT-PH-8B**

Particulate determination in solutions

Supplied as:

1 x sample for particulate determination in solutions

Analyte	Method	AV	Range	SDPA	Units	DP
Particulate determination	Ph. Eur. 2.9.19 Ph. Eur. 2.9.20 USP 788 ChP 0903	RMean	All	Robust SD	-	0

^{**}Test material currently not included in LGC's UKAS Scope of Accreditation.

Sample PT-PH-11**

Endotoxins in solutions

Supplied as:

4mL of solution

Analyte	Method	AV	Range	SDPA	Units	DP
Endotoxins	Ph. Eur. 2.6.14 USP 85 ChP 1143	RMean	>0.05 EU/ml	Robust SD	EU/mI	3

Sample PT-PH-12** Supplied as:

E-liquid physical/chemical analysis 100mL of solution

Analyte	Method	AV	Range	SDPA	Units	DP
Nicotine	ISO 20714:2019 GC	RMean	All	Robust SD	mg/ml	2
Propylene glycol	ISO 20714:2019 GC	RMean	All	Robust SD	% w/w	1
Glycerol	ISO 20714:2019 GC	RMean	All	Robust SD	% w/w	1
Density	Density Meter Pycnometer	RMean	All	Robust SD	g/cm ³	3
Refractive index	Refractometer	RMean	All	Robust SD	-	4
рН	pH meter	Rmean	All	Robust SD	-	3

Sample PT-PH-13** Supplied as:

Potency of Ginseng 5g of ginseng supplement

Analyte	Method	AV	Range	SDPA	Units	DP
Ginsenoside-Rb1	Various	RMean	All	Robust SD	mg/g	2
Ginsenoside-Rb2	Various	RMean	All	Robust SD	mg/g	2
Total ginsenosides	Various	RMean	All	Robust SD	mg/g	2

^{**}Test material currently not included in LGC's UKAS Scope of Accreditation.

Sample PT-PH-14** Elemental contamination in Ginseng

Supplied as: 10g of ginseng

Analyte	Method	AV	Range	SDPA	Units	DP
Arsenic	ICP-MS	RMean	All	Robust SD	μg/g	3
Cadmium	ICP-OES	RMean	All	Robust SD	μg/g	3
Lead	AAS	RMean	All	Robust SD	μg/g	3
Mercury	ChP 2321	RMean	All	Robust SD	μg/g	3

Sample PT-PH-15**
Supplied as:
Sildenafil in supplements
2 x 5g of powdered supplement

Analyte	Method	AV	Range	SDPA	Units	DP
Qualitative	Various	Qualitative Pharmaceutical Analysis				
Quantitative	Various	RMean	All	Robust SD	mg/g	2

Sample PT-PH-16** Cannabidiol in supplements

Supplied as: 10ml of oil or 5g of powdered material

Analyte	Method	AV	Range	SDPA	Units	DP
Cannabidiol	Various	RMean	All	Robust SD	% w/v or % w/w	2

Sample PT-PH-17** Elemental contamination in Pollen supplement

Supplied as: 10g of pollen supplement

Analyte	Method	AV	Range	SDPA	Units	DP
Arsenic	ICP-MS	RMean	All	Robust SD	μg/g	3
Cadmium	ICP-OES	RMean	All	Robust SD	μg/g	3
Lead	AAS	RMean	All	Robust SD	μg/g	3
Mercury	ChP 2321	RMean	All	Robust SD	μg/g	3

Sample PT-PH-18** Potency of *Gingko biloba*

Supplied as: 5g of Gingko biloba

Analyte	Method	AV	Range	SDPA	Units	DP
Quercetin	LC-UV	RMean	All	Robust SD	mg/g	3
Kaempferol	LC-MS	RMean	All	Robust SD	mg/g	3

Analyte	Method	AV	Range	SDPA	Units	DP
Total Aglycones	Spectrophotometry	RMean	All	Robust SD	mg/g	3
Total Terpene Lactones	ChP 0512	RMean	All	Robust SD	mg/g	2
Ginkgolide B		RMean	All	Robust SD	mg/g	3

Sample PT-PH-19** Phytochemical Identity Confirmation

Supplied as: 1g of plant material or plant extract (exact details to be confirmed)

Analyte	Method	AV	Range	SDPA	Units	DP
Phytochemical identity confirmation	All	Qualitative	All	N/A	N/A	N/A

Participants will be required to confirm, whether or not the sample provided is the given substance

Sample PT-PH-20** Potency of multivitamin supplements

Supplied as: 30g of multivitamin supplement (information on the material will be provided in the Instruction Sheet)

Analyte	Method	AV	Range	SDPA	Units	DP
Vitamin B1		RMean	All	Robust SD	mg/g as thiamine mononitrate	2
Vitamin B2		RMean	All	Robust SD	mg/g	2
Vitamin B3	LC-MS	RMean	All	Robust SD	mg/g as niacin equivalents	2
Vitamin B5	LC MS/MS HPLC	RMean	All	Robust SD	mg/g as pantothenic acid	2
Vitamin B6	LC-ICP/MS	RMean	All	Robust SD	mg/g as pyridoxine	2
Folic acid		RMean	All	Robust SD	mg/g	2
Biotin		RMean	All	Robust SD	mg/g	2
Vitamin B12		RMean	All	Robust SD	mg/g	2
Vitamin C	HPLC Titration	RMean	All	Robust SD	mg/g	2

The presence of the analytes is material dependent

Sample PT-PH-21**

Potency of multielement supplements

Supplied as: 15g of multielement supplement

Analyte	Method	AV	Range	SDPA	Units	DP		
Calcium		RMean	All	Robust SD	mg/g	2		
Zinc		RMean	All	Robust SD	mg/g	2		
Magnesium	100,040	RMean	All	Robust SD	mg/g	2		
Copper	ICP/MS ICP-OES	RMean	All	Robust SD	mg/g	2		
Manganese	AAS	RMean	All	Robust SD	mg/g	2		
Potassium	XRF	RMean	All	Robust SD	mg/g	2		
Iron	7	RMean	All	Robust SD	mg/g	2		
Chromium (total)		RMean	All	Robust SD	mg/g	2		
Selenium		RMean	All	Robust SD	mg/g	2		
Compliance with labelling		Qualitative A	Qualitative Analysis					

The presence of the analytes is material dependent

Further details for Advanced Chemical Testing, for example analytes and reporting format, will be published on the preparation instructions supplied with the samples.

^{**}Test material currently not included in LGC's UKAS Scope of Accreditation.

Microbiological samples

Sample PT-PH-03 Supplied as:

Low-level Enumeration and Identification (intended for membrane filtration)

1 x 10ml glass sealed vial containing a single culture of lyophilised microorganism. Final sample volume 1mL (for identification only) or 100mL (identification & enumeration).

Analyte	Method	AV	Range	SDPA	Units	DP
Identification of microorganism	All	Qual Form	<500	N/A	N/A	N/A
Low-level enumeration	All	RMean	<500	0.35	cfu/100ml	0

Sample PT-PH-4A Supplied as:

Enumeration of TAMC and indicator organisms

1 x 10ml glass sealed vial containing a mixed culture of lyophilised microorganism(s). Final sample volume 100mL (neat).

Analyte	Method	AV	Range	SDPA	Units	DP
Total aerobic microbial count	All	RMean	<5,000	0.35	cfu/ml	0
Total bacterial count	All	RMean	<5,000	0.35	cfu/ml	0
Detection and/or enumeration of Staphylococcus aureus	All	RMean	<1,000	0.35	cfu/ml	0
Detection and/or enumeration of Escherichia coli	All	RMean	<1,000	0.35	cfu/ml	0
Detection and/or enumeration of bile-tolerant gram-negative bacteria	All	RMean	<1,000	0.35	cfu/ml	0

Sample PT-PH-4B Supplied as:

Enumeration of yeast, mould and Pseudomonas

1 x 10ml glass sealed vial containing a mixed culture of lyophilised microorganism(s). Final sample volume 100mL (neat).

Analyte	Method	AV	Range	SDPA	Units	DP
Detection of Pseudomonas aeruginosa	All	Qual Form	<1000	N/A	cfu/ml	N/A
Detection of Burkholderia cepacia	All	Qual Form	<1000	N/A	cfu/ml	N/A
Detection and/or enumeration of Candida albicans	All	RMean	<1,000	0.35	cfu/ml	0
Total yeast and mould count and/or enumeration of yeast, enumeration of mould	All	RMean	<2,000	0.35	cfu/ml	0

Sample PT-PH-05 Sterility and identification

Supplied as: 5 x 5ml glass sealed vials which may or may not contain microorganisms at low levels (final sample

volume up to 100mL)

Analyte	Method	AV	Range	SDPA	Units	DP
Sterility	All	Qual Form	<100	N/A	cfu/vial	N/A
Identification of microorganism	All	Qual Form	<100	N/A	cfu/vial	N/A

Sample PT-PH-09 Salmonella presence/absence

Supplied as: 1 x 10mLglass sealed vial which may or may not contain the target organism. Final sample volume

10ml (neat).

Analyte	Method	AV	Range	SDPA	Units	DP
Detection of Salmonella spp	All	Qual Form	<100	N/A	cfu/ml	N/A

Sample PT-PH-10 Microbiological testing of medicinal herbs

Supplied as: 1 x 10ml glass sealed vial & 10g medicinal herb matrix

Analyte	Method	AV	Range	SDPA	Units	DP
Total aerobic microbial count	All	RMean	<5,000	0.35	cfu/g	0
Detection and/or enumeration of Staphylococcus aureus	All	RMean	<1,000	0.35	cfu/g	0
Detection and/or enumeration of coliforms	All	RMean	<1,000	0.35	cfu/g	0
Detection and/or enumeration of yeast and/or mould	All	RMean	<1,000	0.35	cfu/g	0